略過巡覽連結。
摺疊 HOME(>>>>>>>>)Wellcome To ABDCHOME(>>>>>>>>)
摺疊 Global High Quality ProductsGlobal High Quality Products
摺疊 生物及民生科技研發基礎(>9項)生物及民生科技研發基礎(>9項)
摺疊 精密科技研發基礎(>9項)精密科技研發基礎(>9項)
摺疊 心靈雞湯 手工皂心靈雞湯 手工皂
摺疊 分子等模型的手工皂分子等模型的手工皂
摺疊 沒辦法再更傳統了沒辦法再更傳統了
展開 體育及運動休閒用品(>250項)體育及運動休閒用品(>250項)
展開 地區農特產品(>150項)地區農特產品(>150項)
展開 文化地理巡禮,紀錄與構思文化地理巡禮,紀錄與構思
摺疊 精密文明精密文明
展開 LANGUAGESLANGUAGES
HyperLink
         

第12屆台北國際儀器展簡錄(ABDC) The12thTaipeiInternalInstrumentExhibitions.aspx
蛋白質純化簡介(中英對照譯文, from,WIKI) IntroductionsFor_ProteinPurification_WIKI_Translated.aspx
質譜儀簡介(中英對照譯文, from WIKI) IntroductionsForMS_WIKI_Translated.aspx
模擬移動床(SMB) & 多分離管逆流溶劑梯度純化(MCSGP) 簡介
(中英對照譯文, from WIKI)  SimulatedMovingBedChromatography.aspx

管理簡介(中英對照譯文, from WIKI) Managements.aspx
農藥殘留分析的樣品前處理技術的最近研究進展之概述(中英對照譯文) AnOverview_PesticideResiduesAnalysisInCerealsAndFeedstuffs.aspx

代謝症候群生理學3D細胞組裝模型(中英對照譯文)
Physiological Cell Assembly 3D model of Metabolic Syndrome

CAD/CAM 牙科(中英對照譯文) 3D_CAD_CAM_Dentistry.aspx
生物及化合物樣品資料庫(Bio&CompoundBank)
FromWikipedia_中英對照_ABDC
Pesticide Residues Analysis Methods (TFDA_食品中殘留農藥檢驗方法-多重殘留分析方法(五)_英文(ABDC)
2014年蘇格蘭獨立公民投票_中英對照(by ABDC)
Scottish independence referendum, 2014

Preparative DAC HPLC(Global Performances and C/P Values)
Collagen --from WIKI(Bilingual translation 膠原蛋白--中英對照)
Collagen_WikiToChinese.aspx
Tissue Engineering --from WIKI(Bilingual translation 組織工程--中英對照)
TissueEngineering_WikiToChinese.aspx
  關於穀物和飼料中的農藥殘留分析的樣品前處理技術的最近研究進展之概述
An Overview About Recent Advances in Sample Preparation Techniques for Pesticide Residues Analysis in Cereals and Feedstuffs
http://cdn.intechopen.com/pdfs-wm/38063.pdf

1. Introduction
Nowadays, more than 1100 pesticides are possibly used in various combinations and at different stages of cultivation and during postharvest storage to protect crops against a range of pests and fungi and/or to provide quality preservation. Pesticide residues in cereals samples, which might pose a potential risk for human health due to their sub acute and chronic toxicity, could possibly end up in the final products of crops. Contaminants of animal feed can cause harmful health effects in the animals and may be harmful to people through secondary exposure of consumers to products deriving from these animals.
Contamination of feedstuffs may include both naturally occurring and synthetic toxic compounds [1].

1引言
現今, 超過1100 農藥可能被以不同的組合, 使用在栽培的不同階段, 以及在收穫後貯存期間, 以保護作物, 對抗一系列害蟲和真菌, 同時或是提供品質的保存. 穀物樣品中的殘留農藥成份, 由於其亞急性和慢性毒性, 可構成對人類健康的潛在危險, 有可能最後會在作物的終端產品中. 動物飼料的污染物可以在動物引起有害健康的影響, 並且可能經由消費者的二次接觸的這些動物衍生製品而對人可產生危害. 飼料的污染可以包括自然發生的和合成的有毒化合物[1]。

International regulatory agencies have placed emphasis on the control of pesticides such that shall not contain residues of individual pesticides at levels exceeding regulatory maximum residue limits(MRLs),for example, 10 μg/kg. To analyzed a large number of pesticides in various food commodities consistently remain a challenge for analytical chemists [2]. Pesticides can be analyzed by gas chromatography(GC) with electron capture detection, flame ionization detection, or nitrogen-phosphorus detection and/or liquid chromatography(LC) with ultraviolet, diode array, fluorescence, or electrochemical detection.

However, these techniques may lack the selectivity and/or sensitivity required to meet the requirements for analysis of residues due to the complexity of food matrices. These techniques have been largely replaced by GC and LC coupled to mass spectrometric techniques, especially they using tandem mass spectrometry [3].

國際監管機構已經將農藥的控管的重點放在 使不得含有個別農藥殘留量的水平超過管制的最大殘留限量(MRLs), 例如10微克/公斤. 分析各種不同食品類商品的為數龐大的農藥一直都是分析化學家的一項挑戰[2]. 殺蟲劑可用含有有電子捕獲檢測器(ECD), 火焰離子化檢測器(FID), 或氮 - 磷檢測器的氣相層析法(GC), 以及(或則)用含有紫外線檢測器, 二極管陣列檢測器, 熒光或電化學檢測器的液相層析(LC) 來進行分析.

但由於食品基質的複雜性, 這些技術可能缺乏分析殘留農藥所需要的選擇性和/或靈敏度. 這些技術已經很大量地由耦合到質譜的氣相層析(GC)和液相層析(LC)技術所取代, 尤其是他們是用串聯質譜法[ 3 ] 。

The aim of this chapter is to present an overview about recent advances in sample preparation techniques that were developed for the determination of pesticide residues in cereals and feedstuffs by gas or liquid chromatographic methods.
The different extraction and cleanup procedures were pointed out in this chapter with several applications related to the analysis of cereals and feedstuffs.

本章的目的是呈現在樣品製備技術方面的最新進展的概述, 這些是為了用氣相或液相層析法測定穀物和飼料中的農藥殘留而發展的. 本章中指出了不同的萃取和淨化過程, 有幾個相關於穀物和飼料分析的應用.

1.1. Pesticides residues in cereals and feedstuffs During cultivation cereals are attacked by a great variety of pests, diseases and weeds. A key challenge to the protection of current production is the emergence of new pests and diseases, in addition to the spread of current diseases. Crop protection through pesticides has made a significant contribution to growth the cereals productivity since the 1950s.

1.1 穀物和飼料的農藥殘留在栽培期間, 穀物被很多種蟲害, 病害和雜草所攻擊. 一個關鍵的挑戰是除了當前疾病的傳播, 還加上了新的害蟲和疾病的出現. 自1950年代以來, 經由農藥的保護作物, 已對於穀物生產率的增長有顯著的貢獻.

However, losses due to pests globally are still high. The extensions of these losses vary between countries and crops, but one estimate suggests an overall loss of around 40 per cent.
Another more recent assessment suggests losses of 26 to 29% for soybean and wheat, and 30 to 40% for maize and rice.
The same study suggests that losses for wheat could be as high as 50 percent without effective plant protection, and even higher for other crops.

但是由於全球範圍的病蟲害損失內仍然很高. 這些損失的程度隋著國家和作物之間有所不同, 但有估計表明, 約有40%左右的總體虧損.
另一個更近的評估顯示大豆和小麥有 26至29 %的損失, 玉米和大米有 30 ~40%的損失.
同樣的研究表明, 缺乏有效的植物保護, 小麥的損失可能高達 50% , 對其他作物甚至更高.

Improved crop protection in the face of new pests and diseases, as well as resistant strains of current diseases, will rely on a variety of approaches.
The well-managed use of different classes of pesticides(herbicides, fungicides, insecticides, etc) must continue to play a key role.
In face of this, particular attention should be addressed to pesticide residues due to the common use of these compounds in agriculture [4].
在面對新的病蟲害時的作物保護的增進, 以及當前疾病的抗藥品種, 將依靠各種方法. 不同類別的農藥(除草劑, 殺菌劑, 殺蟲劑等)的良好管理使用, 必須繼續發揮關鍵作用. 面對這個的時後, 特別注意的應是指到由於在農業中普遍使用這些化合物所造成的農藥殘留.

Plant protection products may be ingested or absorbed by livestock in three ways:
(1) following direct application of the product to the animal, (2) through residues in feeding stuff,
(3) as a result of treatment of their accommodation.
The usual source of residues is through the legitimate use of pesticides(herbicides, insecticides and fungicides) in the production of crops used in preparation of feeds.
植物保護產品可能是以三種方式被牲畜攝取或吸收:
(1)經由將該產品的直接應用到動物
(2)經由殘留的飼料中
(3)作為治理他們的居住條件的結果殘留物的通常來源是經由對於在生產配製飼料使用的作物合法農藥的使用(除草劑, 殺蟲劑和殺菌劑).

The need for information relevant to the conduct of risk profiles or for management of residues will always remain. Published data about pesticides residues on feed are very scattered and not easy to find.
The results are not necessarily published and a compilation of feed monitoring data is still in the early stages [1].
The analysis of undesirable contaminants in various food and feed samples is nowadays a problem of primary concern for quality control laboratories due to human and animal health risks associated with the accumulation of these substances.
Contaminants in animal feeding stuff can cause harmful health effects in the animals and may be harmful to humans through secondary exposure of consumers to contaminants deriving from these animals.
In the European Union and also in several countries, feeding stuffs are subject to legislation covering their composition, manufacture, storage, transport and usage.
相關於風險行為概況或殘留物的管理資訊的需要將一直存在的. 關於飼料的農藥殘留的公佈數據都非常分散, 且不容易找到. 其結果不一定有被出版, 而飼料監測數據彙編仍處於早期階段[ 1 ].
各種食品和飼料樣品中不希望的污染物的分析, 由於這些積累的物質與人類和動物健康風險的關聯, 是時下質量控制實驗室主要關注的問題. 在動物飼料中的污染物可以引起有害動物健康的影響, 並可能經由消費者的二次暴露於這些從動物中導出的污染物而對人體有害.
歐盟以及在一些國家, 飼料受立法, 包括它們的組成, 製造, 儲存, 運輸和使用.

1.2. Aspects of analytical methods
In the last years, one of the current trends in analytical chemistry is the method development for optimized many tools used in classical methods.
Fast analysis, consumption of small amounts of samples and reagents, high sensitivity and automation are some of the most important goals desired to be achieved.
For many years a large number of research laboratories and analytical instrument manufacturing companies have been investing their efforts in this field, which includes new sample preparation methods and rapid analysis.

Nowadays, improved pesticides multiresidue analysis methodologies with high sensitivity and expanded scopes, which include as many compounds and commodities as possible in a single method, are always required for checking compliance with MRLs and/or for risk assessment of consumer exposure to pesticides.
Otherwise, the multiresidue method development is difficult due to the fact that compounds of different polarity, solubility and volatility have to be extracted and analyzed simultaneously [5]. In practice, multiresidue methods consist of the following basic steps [6]:

1.2 分析方法方面
在過去的幾年, 現在的分析化學趨勢是用於優化傳統方法中使用的許多工具的方法開發. 快速分析, 少量的樣品和試劑的消耗, 高靈敏度和自動化是期望實現的最重要的目標的一部份. 多年大量的研究實驗室和分析儀器製造公司已在這一領域經投資他們的努力, 其中包括新的樣品製備方法和快速分析.

現今, 具有極高的靈敏度和擴展範圍, 且盡可能在一個單一的方法裏包括盡可能多的化合物和商品, 的提高農藥多殘留物的分析方法, 在最大殘留限量和 /或消費者接觸農藥的風險評估的合格確認檢查時, 一直都是被需要的.
然而, 由於不同極性, 溶解度和揮發性的化合物需有要被同時萃取及進行分析的這一事實 , 多殘留方法的發展是困難的[5].
在實務中, 多殘留方法包括以下幾個基本步驟[ 6 ] :
 i. isolation of residues from a representative sample(extraction);
ii. separation of co-extracted matrix components(cleanup);
iii. identification and quantification of target analytes(quantitative step), and if the need is important enough, this is followed by next step;
iv. confirmation of results by an additional analysis.

一. 從有代表性的樣品分離出殘留(萃取);
二. 共萃取基質成分的分離(清理);
三. 識別與定量目標分析物(定量步驟), 如果需求是足夠重要的, 這之後是下一個步驟;
四. 經由一個額外的分析以確認結果.

The choice of sample treatment applied depends heavily on the complexity of the matrix. Water, in general, represents a less complicated matrix than air, sediment, soil or food samples.
This choice is also related to the detection method. The more sensitive and detection method is used, the less stages of sample treatment will be required.
Modern analytical strategies tend towards automatization and integration of sample pretreatment in the chromatographic systems as far as possible.
Development of solventless(or at least with low solvent consumption) sample preparation techniques constitute a pillar of green analytical chemistry and have taken a rapid development during last year's.
The great interest in this approach is due to toxicological, environmental and economical aspects [7].
For extraction, although different organic solvents, and mixtures of organic solvents, have been used to extract a wide range of compounds with different physico-chemical properties from food, the use of acetone, ethyl acetate, and acetonitrile has predominated in multiresidue methods.
These solvents provide high pesticide recoveries over a wide polarity range; however, at the same time a lot of matrix components are co-extracted.
To achieve required performance characteristics, cleanup techniques, are commonly employed for their removing. These procedures lead to increasing overall cost of the method, extending analysis time and requiring additional labor [6].

使用於樣品處理方式的選擇, 很大程度上取決於其基質的複雜性. 水, 在一般情況下, 代表一個比空氣, 沉積物, 土壤或食物樣品來說, 是不太複雜的基質. 這種選擇也與檢測方法相關. 使用的檢測方法愈靈敏, 所需要的樣品處理階段就愈少.
現代分析策略趨向自動化和盡可能 整合樣品前處理到層析系統中. 無溶劑(或至少有低溶劑消耗)樣品製備技術的發展, 構成了綠色分析化學的支柱, 並在近年來有迅速的發展. 這種方法極有興趣的是由於其毒理學, 環境和經濟等面向[7]。
對於萃取, 雖然不同的有機溶劑及有機溶劑的混合物, 已被用於萃取來自食物的不同的物理 - 化學性質的一個很大範圍的化合物, 丙酮, 乙酸乙酯, 乙?等的使用已經在多殘留方法中居於主導.
這些溶劑在很寬的極性範圍內提供高農藥的回收率, 不過, 在同一時間有很多基質成分也被萃取了.
為了達到所需的性能特性, 淨化技術通常用於其去除. 這些過程導致增加該方法的總成本, 延長了分析時間, 並需求增加的勞力[6].

The difficulties of pesticide residue analysis in cereals and animal feed samples are caused by the needed of the elimination of chemically non-related main matrix components(e.g., organic matter, lipids, proteins) and, then, if required, by removal of other chemically related analytes that could interfere in the instrumental determination of the investigated compounds [8].
Feedstuffs are also burdened with large quantities of other components after extraction as animal feeds can be complex mixtures that include constituents such as grains, milling by products, added vitamins, minerals, fats, and other nutritional and energy sources.

穀物和飼料樣品農藥殘留分析的困難, 是起因於消除化學上非相關的主要基質成分(例如, 有機物質, 脂質, 蛋白質)的需要, 然後, 如果需要, 起因於除去在儀器測定目標化合物時可能干擾的其它化學相關分析物 [8].
萃取之後的飼料也背負著大量的其它組分, 因動物飼料可以是複雜的混合物, 包括例如穀物, 碾磨副產品, 添加的維生素, 礦物質, 脂肪和其他營養和能量來源等成分.

Even simpler cereal matrices contain much more co-extractants than typical matrices of high water content such as fruits and vegetables [1].
This fosters the development of strategies to isolate/extract the pesticide fraction from the whole fatty matrix. In fact, it is very dif?cult to avoid the co-extraction of fatty material, even more, taking into account that some of the pesticides which are usually targeted are fat-soluble non-polar compounds (e.g. organochlorine), and tends to concentrate and remain in the fat.
Since, high recoveries of most multiclass pesticides must be obtained in an ideally fat-free extract, an additional clean-up step is usually included prior to subsequent steps in the analytical process.
Additionally, the exact composition of the sample is often unknown to the testing laboratory [9].

即使是簡單的穀類基質, 比高含水量的典型基質諸如水果和蔬菜等, 含有多很多的共同萃取物[1]. 這促進了從整體脂肪基質中分離或萃取農藥部分的發展策略. 事實上, 要避免共萃取脂肪物質是非常困難的, 更甚者, 考慮到一些常見的農藥是脂溶性的非極性化合物(如有機氯), 其傾向於集中並被留在脂肪內.
考慮到一些其通常針對的農藥是脂溶性的非極性化合物(如有機氯), 以及趨於集中並保持在脂肪。
因為, 大部份多類別類農藥的高回收率, 必須由一個理想的無脂萃取物來獲得, 因為, 高回收率最多類農藥必須在一個理想的無脂萃取物來獲得, 通常在後續的分析過程步驟中, 包含一個額外的清理步驟. 此外, 樣品的確切組成, 對於測試實驗室往往是未知的[9].

2. Sample preparation
Despite advances in the sensitivity of analytical instrumentation for the end-point determination of analytes in food samples, a pre-treatment is usually required to extract and isolate the target analytes from the food matrix, thus facilitating their determination [9].
Extraction of pesticides from food depends on their polarity and the type of matrix. Generally, it comprises  homogenization of the sample with an organic solvent alone or mixed with water or pH adjusted, using an ultrasonic bath, a blender or a homogenizer [10].
In most cases, although the analytes of interest are isolated from the bulk matrix, several contaminants may also be co-extracted, as well as part of the matrix, which could interfere in the determination step of the analysis.

2. 樣品製備
儘管分析儀器的在食品樣品的分析物的終端測定靈敏度的進步, 預處理通常需要從食品基質中萃取並分離出目標分析物, 如此使其能被測定[9].
食品中農藥的萃取決於其的極性與基質的類型. 一般地, 它包括以單獨使用或與水混合或調節pH值的有機溶劑, 使用超聲波浴, 混合器或均質器將樣品均質化[10].
在大多數情況下, 雖然所關注的分析物是從整體的基質被分離, 一些污染物也會被共萃取, 包含部份的基質等, 可能會在分析中的測定步驟有干擾, 造成分析物的檢測和定量的問題[11].

After the extraction process, generally a clean-up procedure is carried out in order to remove the co-extracted compounds that may act as interferences during chromatographic analysis, causing problems in detection and quantitation of the analytes [11].
The clean-up step aims at the isolation of the target analytes from potential interfering co-extractives as well as discarding the extraction solvent and preparing the target analytes in an appropriate chemical form for its characterization and quantification.

在萃取程序之後, 通常進行一個清潔步驟以能夠除去在層析分析可能作為干擾, 在分析物的檢測和定量造成問題的共萃取化合物[11]. 清潔步驟目的在於將目標分析物從潛在干擾的共萃取物分離出來, 以及去除萃取溶劑和製備好該目標分析物的定性和定量的適當化學形式.

Therefore, pesticide residue analysis protocols involve two main stages: The isolation of the pesticides from the matrix(sample treatment) and the analytical method for the determination.
Sample treatment, which involves both the extraction of the pesticides and the purification of the sample extract obtained, still remains as the bottleneck of the entire procedure, despite much progress on automation has been accomplished [9].

因此農藥殘留分析方案包括兩個主要階段: 從基質中分離出農藥(樣品處理), 以及測定所用的分析方法.
樣品處理, 它涉及到農藥的萃取和樣品萃取物的純化兩者, 仍然作為整個過程中的瓶頸, 儘管自動化已達成很大的進展[9].

In food analysis, traditional methods for sample preparation are laborious, time consuming and usually involve large amounts of solvents, which are expensive, generate considerable waste, contaminate the sample and can enrich it for analytes.
In addition, usually more than one clean-up stage prior to detection is required [12]. As a result, modern sample preparation procedures have been developed or improved to overcome the drawbacks of the traditional approaches. Growing concern over food safety necessitates more rapid and automated procedures to take into account the constant increase in the number of samples to be tested, so interest in procedures that are fast, accurate, precise, solventless, inexpensive and amenable to automation for on-line treatment is ongoing.

在食品分析中, 傳統的樣品製備方法是費力, 費時且通常涉及大量溶劑, 那是昂貴的, 產生相當大的浪費, 污染樣品並且可以使它用更多量地存在於分析物. 此外, 在檢測前, 通常超過一個以上的清理階段是必需的[12]. 因此, 現代化的樣品製備程序已經被開發或改進, 以克服傳統方法的缺點.
人們對食品安全的日益關注, 產生了進行測試樣本數不斷增加的考量下, 更迅速更且自動化程序的需求. 所以對於能夠快速, 準確, 精確, 無溶劑, 價格不貴, 易於在線處理的自動化等的程序的興趣是持續的.

Today special attention is paid to such analytical sample preparation procedures which ensure reduction of the amount of liquid solvents used or their complete elimination in the course of the analytical procedure.
A great increase in interest in the so-called solventless method is the result of both ecotoxicology (dumping residual solvents, usually highly toxic, into the environment) and economics(high purity solvents are expensive) [12].
Different studies have been described in the literature about the sample preparation and chromatographic determination of pesticide residues in food and feedstuffs and these results are described in this chapter.

今天特別的注意力被致力於這種分析樣品的製備程序, 以確保在分析程序的過程中, 能減少或完全消除液體溶劑的使用量.
在所謂的無溶劑法的興趣的大量增加, 既是生態毒理學(傾倒殘留溶劑, 通常是劇毒, 進入環境和經濟學(高純度溶劑價格昂貴)的結果[12].
文獻中已有描述到關於在食品和飼料中的農藥殘留的樣品製備和層析法測定的不同研究, 這些成果在本章中描述.

2.1. Solid-liquid extraction
The first step in the pesticide residues analysis from semisolid and solid samples is usually the exhaustive extraction of the target compounds from the matrix in which they are entrapped.
The essentially non-selective character of this initial treatment makes mandatory the subsequent purification of the obtained extract, first by elimination of matrix [8].
In the last decades, one of the most applied pesticide extraction technique from cereals was solid–liquid extraction(SLE).
Before the SLE, solid samples are transformed into fine and homogeneous particles by mechanical grinding, mixing, rolling, agitating, chopping, crushing, macerating, mincing, pressing, or pulverizing.

2.1 固 - 液萃取
從半固體和固體取得的樣品的農藥殘留分析的第一步, 通常是從基質中盡可能地萃取被包埋在裏面的目標化合物. 這個非選擇性特徵的初始化處理方式, 強制地使後續對於所得到的萃取物的純化, 必須先作基質的消除.
在過去的數十年, 最常用於從穀物中萃取農藥的技術之一是固 - 液萃取(SLE). 在SLE之前, 固體樣品被以機械研磨, 混煉, 壓延, 攪拌, 切碎, 粉碎, 浸軟, 切碎, 擠壓或粉碎等操作, 轉型為細小均勻的顆粒.

The homogenized solid samples are repeatedly extracted with an immiscible organic solvent, and the extracts are then centrifuged, concentrated and/or purified before the final analysis [10].
An important step in the preparation of food samples prior to final analysis is isolation and/or enrichment.
The procedures consist of the transfer of analytes from the primary matrix into the secondary one with a concurrent purging of interfering substances(isolation) and increasing the analytes concentrations to a level above the detection limit for a given analytical technique(enrichment).

均質化的固體樣品被反複使用不混溶的有機溶劑萃取, 而後萃取液在最終分析之前被離心分離, 濃縮和/或純化[10].
在最終分析之前, 食品樣品製備的一個重要步驟是分離和(/或則)富集(濃縮).
該程序包括將分析物從主基質進入二次的一個的移轉, 而且同時進行干擾物質的掃除(隔離)以及增加分析物的濃度到給定的分析技術的檢測極限以上(濃縮).

In the case of organic contaminants, such as pesticides, in cereals samples, it is necessary to replace the solid matrix with a liquid one. For this purpose, an appropriate extraction method should be used.
Conventional extraction of organic analytes from food samples usually begins with a homogenization step, followed by solvent extraction aided by shaking is based on the partitioning of analytes between liquid and solid phases [9].
When considering this technique, there are many inherent disadvantages, e.g., it is laborious and time-consuming, expensive and apt to form emulsion, it requires the evaporation of large volumes of solvents and the disposal of toxic and flammable chemicals. Moreover, a relatively large amount of matrix is required. Smaller sample sizes become important when dealing with real life problems, such as consumer complaints and alleged chemical contamination.

在有機污染物的情況下, 例如在穀物樣品中的農藥, 它是有必要用液體的替換固體的基質. 為此目的, 應使用一個適當的萃取方法. 傳統從食品樣品中萃取有機分析物, 通常以一個均質化步驟開始, 接著是以搖盪作為輔助的溶劑萃取, 是基於分析物在液相和固相之間的分佈[9].
當考慮這種技術, 有很多固有的缺點, 例如, 這是費力和費時的, 昂貴的且容易形成乳膠液, 它需要大量溶劑的蒸發和有毒和易燃的化學品的丟棄. 甚且, 這需要相對大量的基質. 當處理現實生活中的問題時, 例如消費者投訴和指控的化學污染, 小樣本量變得重要.

Recent regulations pertaining to the use of organic solvents have made classical SLE unacceptable because of very large amounts of solvents used in this technique.
For these reasons(to reduce the usage of solvents), many innovations can be found in analytical processes that can be applied to food preparation for extraction [13, 14]. This has resulted in the recognition that SLE can now be replaced with faster and less expensive techniques.
These new approaches in pesticides residues extraction from cereals and feedstuffs samples were showed in the next reviewed sections.

有關有機溶劑使用的近期法規已使得傳統SLE不被接受, 因為在該技術中使用非常大量的溶劑. 由於這些原因(減少溶劑的使用量), 可以找到許多可以應用到食品萃取製備的分析過程的創新[13, 14]. 這已經導致了 SLE現在可以被更快, 更不貴的技術所替換.
這些從穀物及飼料樣品農藥殘留萃取的新方法, 在接下來的節次中說明.

2.2. QuEChERS
The QuEChERS(quick, easy, cheap, effective, rugged and safe) method was introduced by Anastassiades et al. [15] as a new approach to extract a wide range of pesticides from different food matrices with high water content.
This basic procedure is based on a liquid partitioning with acetonitrile followed by a dispersive solid phase extraction(d-SPE) cleanup with primary secondary amine(PSA).
This procedure has been applied with success in several nonfatty(<2%) and low-fat(2–20%) food matrixes.
In this method anhydrous magnesium sulphate is use to reduce water in the sample, along with either sodium chloride [16].

2.2 QuEChERS法
QuEChERS(快速, 簡便, 經濟, 高效, 耐用和安全的)方法是由 Anastassiades等引進[15], 作為一種從高含水量的不同食品基質萃取多種農藥的新方法. 這個基本的程序是基於一個與acetonitrile分液分佈, 接著以一級和二級胺(PSA)作淨化的分散固相萃取(d-SPE). 這個過程已經被成功地應用於幾個無脂肪 nonfatty(<2%)和低脂肪(2-20%)的食物基質. 在這個方法中, 無水硫酸鎂是用來減少樣品中的水份, 也有伴隨著氯化鈉的使用[16].
Since 2003, modifications to the original method to ensure efficient extraction of pH dependent compounds(by using different buffers solutions, e.g. acetate or citrate) [17, 18] or addition of water to dry samples(e.g. cereals) in order to obtain the necessary moisture have been introduced [19].
To remove matrix components in the clean-up step, modifications of the original d-SPE step by using graphitized carbon black(GCB) and C18 sorbent, SPE in cartridge or Florisil cartridges have been used.

自2003年以來, 修改原來的方法以確保對於pH值有相依化合物的有效率萃取, (經由使用不同的緩衝液溶液, 如乙酸鹽或檸檬酸鹽)[17, 18], 或添加水到乾的樣品(如穀物)以便獲得必要的水分等, 已被引入[19].
為淨化步驟中除去基質成分, 用石墨化炭黑(GCB)和C18吸附劑的d-SPE, 固相萃取匣或Florisil匣等的原始的d-SPE步驟的修改已經被使用.

The QuEChERS method is particularly popular for determination of polar, middle polar and non-polar pesticide residues in various food matrices because of its simplicity, inexpensiveness, amenability to high throughput, and relatively high efficiency results with a minimal number of steps, enabling a laboratory to process significantly larger number of samples in a given time as compared to the earlier methods, e.g. liquid-liquid extraction(LLE) methods [7, 20].

因為它的簡單性, 便宜, 可符合高通量, 和有最少步驟的相對較高的效率結果, QuEChERS方法在測定各種食物基質的極性, 中等極性及和非極性農藥殘留物特別受歡迎, 相較於較早的方法, 例如液 - 液萃取(LLE)方法[7,20], 使一個實驗室能夠在給定的時間內, 處理顯著更大數目的樣品.

QuEChERS offers several advantages over most conventional techniques because it does not require glassware or auxiliary equipment(e.g. vacuum manifolds), uses low volumes of solvent, generates little solvent waste and provides high recovery of analytes [21].
When compared with other sample preparation methods, it is clear that it is extremely fast and inexpensive. It has already received world wide acceptance because of its simplicity and high through put enabling a laboratory to process a high number of samples in a short period of time [20].

QuEChERS提供了超過大部份的傳統技術的一些優點, 因為它不需要玻璃器皿或輔助設備(如真空歧管), 採用低體積的溶劑, 產生很少的溶劑廢液, 並提供分析物的高回收率[21].
當與其它樣品製備方法相比, 很明顯, 這是極其快速和便宜, 因為它的簡單性和高通量, 使一個實驗室能在短時間內處理大量的樣品[20], 它已經世界性地被廣泛地接受了.

The Table 1 summarizes the results described below and another applications based on QuEChERS extraction method for pesticides residues determination in cereals and feedstuffs.

TABLE_1::: 表1總結了以下所描述的結果和另一個用於穀物和飼料農藥殘留測定, 基於QuEChERS萃取方法.

Walorczyk [22] employed a buffered QuEChERS method to prepare samples of cereals grain and some dry feedstuffs prior to the determination of 122 pesticides by GC-MS/MS. A 5 g finely ground sample was placed in centrifuge tube and 10 mL water were added. Later, 15 mL acetonitrile were added and the mixture shaken vigorously.
Further, 0.5 g disodium hydrogen citrate sesquihydrate, 1 g trisodium citrate dihydrate, 4 g anhydrous magnesium sulphate, and 1 g sodium chloride were added, and the mixture was hand-shaken, then centrifuged.

Walorczyk[22]在以GC-MS/MS測定122種農藥之前, 採用一個緩衝液的 QuEChERS方法以製備穀物糧食和一些乾飼料樣品. 將5g磨細樣品置於離心管中, 加10毫升水的溶液. 之後加15mL 乙?並將劇烈振搖該混合物.
更進一步再加入 0.5g檸檬酸氫二鈉倍半水合物, 1克檸檬酸三鈉二水合物, 4克無水硫酸鎂, 和1g氯化鈉 , 將混合物用手振搖, 然後離心.

Afterwards, a 7.5 mL aliquot of the supernatant was transferred to a centrifuge tube(15 mL) containing 0.75 g anhydrous magnesium sulphate, 0.5 g C18 and 0.125 g PSA. The tube was vortexed and centrifuged.
A 3 mL aliquot of the supernatant was transferred into a glass test tube, the extract was evaporated to nearly dryness under a stream of nitrogen and the residue was re-dissolved in 1.5 mL toluene prior to its injection into the GC-MS/MS system.
Despite the fact that the method was found to be useful for the purpose of multiresidue screening as it permitted detection at low levels(0.01 mg/kg) for approximately 68% of the target pesticides, many recoveries and RSD values were not as good as required for validation in compliance with the criteria established by the European Union.

之後, 將7.5毫升上清液的部分試樣移到含0.75克無水硫酸鎂, 0.5g C18和0.125克PSA的離心管(15ml)中.將管渦旋並離心. 上清液中的3毫升部分試樣移至玻璃試管中, 此萃取液在氮氣流下蒸發至近乾, 在將其注射入GC-MS/MS系統之前, 殘餘物重新溶解在1.5毫升甲苯.
儘管該方法被發掘對於多殘留篩查的目是有用的, 因為它允許對約為68%的目標農藥, 有低濃度(0.01毫克/公斤)的檢測, 許多回收率和RSD值 並沒有如符合歐洲聯盟制定標準的驗證要求一樣好.

Table 1. Different methods applied for determination of pesticide residues in cereals and feedstuffs based on QuEChERS extraction method. TABLE_1:::

表1. 基於QuEChERS萃取法, 應用於穀物和飼料農藥殘留測定的不同的方法. TABLE_1:::

In a new work Walorczyk [1] improved his previous method. The most important aspects considered during the present work were (i) extension of the scope of the previous method to include as many as 144 target analytes and (ii) re-design of the GC-MS/MS acquisition method. The linearity of the calibration curves was excellent in matrix-matched standards, and yielded the coefficients of determination r 2 >= 0.99 for approximately 96% of the target analytes.

在一個新的工作中 Walorczyk[1]改進了他以前的方法. 在目前的工作中, 被考慮到的最重要的方面是
 (一) 延續之前方法的範圍以包括多達144目標分析物, 和
(二) 重設計的GC-MS/MS採集方法.
對於基質配合的標準品, 校正曲線的線性是優異的, 並且在約96%的目標分析物, 可得到R 2>=0.99 的相關係數.

Average recoveries of the pesticides spiked at 0.01 mg/kg into a feed mixture and wheat grain were in the range 70–120% with associated RSD values <= 20% for approximately 60 and 67% of the compounds, respectively.
Base on these results, the proposed approach has been proven to be highly efficient and suitable for routine determinations of multiclass pesticides in a range of cereal and related matrices. In this study, 145 samples of matrices of differing complexity including cereals grain, bran, whole ears, straw, hay, feed mixtures and other samples such as malt, starch and dry vegetables have been analyzed.
A total of 15 different compounds have been detected, among which pirimiphos methyl, deltamethrin, tolylfluanid, dichlofluanid and tebuconazole were the most frequently encountered ones.

加入0.01毫克/千克的農藥到飼料混合物及小麥, 分別約有60和67%的化合物, 其平均回收率在70-120%範圍, 關聯RSD值<=20%.
基於這些結果, 所提出的方法已被證明是高效 及適於一個範圍內的穀類和相關基質的多類農藥的常規測定. 在這項研究中, 145個不同複雜程度的基質樣品, 包括穀物糧食, 麥麩, 全耳, 稻草, 乾草, 飼料混合物及其他樣品, 如麥芽, 澱粉和干蔬菜等, 進行了分析.
共有15種不同的化合物已被檢測到, 其中甲基嘧啶磷, 溴氰菊酯, 對甲抑菌靈, 抑菌和戊唑醇是最經常遇到的.

Kolberg et al. [18] developed and validated a multiresidue approach also based on QuEChERS method for the determination of 24 pesticides in wheat, white flour and bran using triplequadrupole GC-MS in negative chemical ionization mode.
The method was validated evaluating the following parameters: linearity, limit of detection, limit of quantification, matrix effect as well as precision and accuracy, evaluating the percentage of recovery at four different spike levels.

KOLBERG等.[18] 開發和驗證了一個也是基於QuEChERS法的多殘留的方法, 使用負化學電離模式下的 triplequadrupole GC-MS分析, 用以測定小麥, 白麵粉和麩皮裏的24種農藥.
此的方法對以下參數進行了驗證評估: 線性, 檢測極限, 定量極限, 基質效應以及精確度和準確度, 評估在四個不同的層級的標準品添加下的回收率百分比.

The linear range used in the calibration curves was from 1.0 to 100 μg/L for wheat and 2.0 to 200 μg/Lfor flour and bran, both with values of r 2 >= 0.99. The recoveries had been considered satisfactory presenting values between 70 and 120% with RSD < 20% for the majority of compounds.

所使用的校正曲線線性範圍小麥為1.0至100微克/L的 以及麵粉和麩皮為2.0-200微克/L, 都有>=0.99的r2值. 回收率一直被認為良好的, 對於主要的化合物有<20%的相對標準偏差, 呈現70及120%之間的數值.

Koesukwiwat et al. [26] modified the original QuEChERS method for the analysis of phenoxy acid herbicide residues in rice samples. The new approach was based on the extraction with 5%(v/v) formic acid in acetonitrile and inclusion of citrate buffer for helped partitioning of all the analytes into the acetonitrile phase. The extract was then cleaned up by d-SPE using C18 and alumina neutral as selective sorbents.

Koesukwiwat等. [26]修改了初始的QuEChERS分析稻米樣品中 苯氧羧酸類除草劑殘留的方法. 這種新方法是基於用5%(V/V)甲酸的乙?溶液的萃取, 和含有用於幫助所有分析物分佈進入到乙?相的檸檬酸鹽緩衝液. 萃取液接著被以使用C18和中性氧化鋁作為選擇性吸附劑的 d-SPE 方式所潔淨.

Further optimization of sample preparation and determination allowed recoveries between 45 and 104% for all 13 phenoxy acid herbicides with RSD >= 13.3% at 5.0 μg/kg concentration level. Limit of detections(LODs) of 0.5 μg / kg or below were attained for all 13 phenoxy acids. Quantitative analysis was done by UHPLC-MS/MS in the multiple-reaction monitoring (MRM) mode using two combinations of selected precursor ion and product ion transition for each compound.
This developed method when compared with original QuEChERS method produced relatively higher recoveries of the acid herbicides with a smaller range of variation and less susceptibility to matrix effects.

進一步的樣品製備和測定的優化, 允許13種苯氧羧酸類除草劑, 在5.0微克/千克的濃度水平有RSD >=13.3%, 45和104%之間的回收率, 對於所有13種苯氧酸, 達到了0.5微克/公斤或以下的檢測極限.
定量分析是經由在多反應監測模式(MRM), 對於每個化合物使用選定的前體離子和產物離子轉變的兩個組合, 的 UHPLC-MS/MS法.
當與原QuEChERS方法比較時, 這種開發的方法產生相對較高的羧酸類除草劑的回收率, 具有較小範圍的變異及較小的基質影響效應.

Otherwise, the main disadvantage of the QuEChERS method compared to other common methods is that the 1 g / mL final extract concentration is lower than the 2–5 g / mL concentrated extract of most traditional methods.
If matrix is not the limiting source of noise in the analysis, this leads to a higher LOQ for the same injection volume in the QuEChERS method [3].
This method is adaptable and can be easily tailored to cope with new matrices through the selection of alternative sorbents.

不過, 與其他常見方法相比, QuEChERS方法的主要缺點是 1克/毫升的最終萃取物濃度比大部份傳統的方法濃縮萃取物的2-5克/毫升低些. 如果基質不是分析當中的雜訊限制來源, 在相同的注射量下, 這使得QuEChERS方法達到較高的LOQ[3].
這種方法是可調適, 且經由選擇替換的吸附劑, 可容易地裁製以應對新的基質.

In fact the initial extract can be divided across tubes containing different sorbents to cater for problem analytes. Work in progress indicates that the developed extraction conditions will recover the majority of food contaminants [35].
Although QuEChERS has mainly been used for the determination of pesticides, some other compounds, such as pharmaceuticals, or veterinary drugs have been determined using QuEChERS in other food and environmental samples [7, 36].

事實上最初的萃取物可以被分開放在含有不同吸附劑的試管, 以應付問題分析物. 正在進行中的工作指出所研製的萃取條件將函蓋大部分的食品污染物[35].
雖然QuEChERS試劑已被主要用於農藥的檢測, 在其他食物和環境樣本品, 其他一些化合物, 如藥品, 或動物用藥已使用QuEChERS測定[7,36].

2.3. Pressurized-liquid extraction(PLE)
2.4. Supercritical-fluid extraction(SFE)
2.3. 加壓液相萃取(PLE)
2.4. 超臨界流體萃取(SFE)

2.5. Solid-phase extraction(SPE)
Solid-phase based extraction techniques are widely applied to many matrices, like foods and include: matrix solid-phase dispersion(MSPD), solid-phase extraction(SPE), solid-phase microextraction(SPME) and stir-bar sorptive extraction(SBSE).
In this technique a sorbent will retain and concentrate some target analytes from the sample solution due strong affinity between sorbent and analytes [12].
Solid-phase extraction involves the use of disposable cartridges and disks to trap analytes.

2.5. 固相萃取(SPE)
以固相為基礎的萃取技術已廣泛地被應用到許多基質, 如食品 , 其中包括: 基質固相分散(MSPD), 固相萃取(SPE), 固相微萃取(SPME) 攪拌棒吸附萃取(SBSE) 在這種技術中, 由於吸附劑和分析物之間很強的親和力, 吸附劑從試樣溶液中留住及濃縮了一些目標分析物[12].
固相萃取涉及到用來捕集分析物的可丟棄式卡匣及和碟盤的使用.

As the sample solution passes through the activated sorbent bed, analytes concentrate on its surface, while the other sample components pass through the bed or vice versa, if necessary for cleanup [50].
When compared with LLE, the advantages of SPE are: simultaneous removal of interfering substances and concentrations of analytes, multiple samples can be treated in parallel and the use of a relatively small quantity of solvent [12].

當樣品溶液通過活化的吸附劑床體的, 分析物濃縮在其表面上, 而其他樣品組分通過床體, 或反是相反的,如果有必要進行潔境[50]. 當與液液萃取相比, 固相萃取的優點是: 同時除去干擾物質及分析物的濃縮, 多個樣品可以並行地處理, 以及相對較小量溶劑的使用[12].

Before SPE can be applied to a solid matrix(soil, vegetables and fruits), a separate homogenization step and, often, filtration, sonication, centrifugation, and liquid/liquid cleanup are required.
However, the presence of interfering substances, such as salts, humic acids, and other humic substances in water or proteins, lipids and carbohydrates in food makes the determination of polar or early-eluted pesticides, difficult or almost impossible [51].

在SPE可以被應用於固體基質(土壤, 蔬菜和水果)之前, 一個單獨的均質化步驟, 而且經常是過濾, 超音波處理, 離心, 以及和液體/液體的潔淨是必需的.
然而, 干擾物質的存在, 如鹽, 腐殖酸, 及其他水或蛋白質裏的腐殖質,在食品裏的脂類和碳水化合物, 使得極性或較早被沖滌出來的農藥的檢測, 很難或幾乎不可能的[51].

An analytical method for the determination imazaquin residues in soybeans was proposed by Guo et al. [52] based on liquid/liquid partition strong anion exchange solid-phase extraction.
This technique was used, in order to achieve an effective cleanup, removing the greatest number of sample matrix interferences.
In this procedure, the combination between optimized chromatographic conditions and detection by ultraviolet the procedure was showed to be sensitive and reliable for determining the imazaquin residues in soybean samples.
This method is characterized by recovery >88.4%, precision 6.7% RSD, and sensitivity of 0.005 mg/kg.

一項基於液/液分佈的強陰離子交換固相萃取, 測定大豆裏的除草劑imazaquin殘留量的分析方法由Guo等人所提出[52] .
這種技術被使用是為了達到有效的淨化, 除去最大數量的樣品基質干擾. 在此程序裏, 在優化的層析條件與用紫外線檢測之間的組合, 此程序被證實用於測定大豆樣品裏的除草劑imazaquin殘留是靈敏且可靠的. 這種方法有具有 >88.4%回收率, 精準度 6.7%RSD, 和0.005毫克/千克的靈敏度的特點.

The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.
A sensitive and simple method for simultaneous analysis of acetochlor and propisochlor in corn and soil has been developed by Hu et al. [53].
The extraction of pesticides from soil and corn matrices was performed with methanol/water and acetone, respectively, followed by solid phase extraction(SPE) to remove co-extractives, prior to analysis by gas chromatography with electron capture detection(GC-ECD).
Primary secondary amine(PSA) SPE cartridges(500 mg, 3 mL) were used for sample preparation.

該方法已成功地應用於在一個實驗農場生長, 施用過imazaquin除草劑配方的大豆樣品, 的imazaquin除草劑殘留量分析. 一個用於同時分析在玉米和土壤裏的acetochlor和propisochlor 的敏感且簡便的方法已經由Hu等人開發[53].
在使用電子捕獲檢測器(GC-ECD)的氣相層析分析之前, 從土壤和玉米基質中的農藥的萃取, 是分別用甲醇/水和丙酮進行, 接著固相萃取(SPE)以除去共萃取物. 一級二級胺(PSA) SPE柱(500毫克, 3毫升)用於樣品製備.

The elution was made with 5 mL petroleum ether-acetic ether(95/5, v/v) and 3 mL petroleum ether-acetic ether(95/5, v/v), respectively.
The recoveries of two pesticides ranged from 73.8% to 115.5% with relative standard deviations(RSD) less than 11.1% and sensitivity of 0.01 mg/kg .
The method was successfully applied to determine acetochlor and propisochlor in real corn and soil samples.
The authors related that residues of acetochlor and propisochlor residues were detected(<0.01 mg/kg) in corn at harvest time with holding period of 2.5 months after treatments of the pesticides.

沖滌液分別是由5ml石油醚 - 乙酸乙酯(95/5, v/v) 和3毫升石油醚 - 乙酸乙酯(95/5, v/v)組成. 兩種農藥的回收率在73.8%至115.5%範圍, 有小於11.1%的相對標準偏差(RSD) 和0.01毫克/千克的靈敏度.
該方法已成功應用於測定實際玉米和土壤樣品中的acetochlor及propisochlor.
作者將玉米在收穫期所測得的acetochlor及propisochlor殘留殘留量(<0.01毫克/千克) 關聯到施用農藥後的2.5個月的駐留期.

The use of SPE in combination with HPLC-DAD was employed to determine bispyribac-sodium residues in rice.
The liquid–liquid partition and anion exchange solid phase procedures that were developed provide effective extraction and cleanup methods for analysis feasibility, with recoveries between 83.98 to 98.51% with a RSD from 0.56 to 6.36% and sensitivity of 0.01 mg/kg, with main advantages of high precision, accuracy and good selectivity.
Another favorable feature is the reduction of sample processing time [54].

固相萃取與HPLC-DAD的組合使用, 用來測定稻米裏的bispyribac-sodium殘留. 以83.98到98.51%之間的回收率, 從0.56到6.36%的相對標準偏差, 和0.01毫克/千克的靈敏度, 以有高精度, 準確度和良好的選擇性的主要優點, 此被開發出來的液-液分配和陰離子交換固相程序, 對於分析可行性, 提供了有效的萃取和淨化方法.
另一個有利的特點是樣品處理時間減少[54].

2.6. Matrix solid-phase dispersion(MSPD)
2.7. Gel-permeation chromatography(GPC)
2.6. 基質固相分散(MSPD)
2.7. 凝膠滲透層析(GPC)

3. Instrumental identification and quantification techniques
The two main analytical techniques used in food analysis are gas chromatography(GC) and liquid chromatography(LC), which allow identification and quantitation of pesticide residues in complex matrices.

3. 儀器定性和定量技術
用於食品分析的兩種主要分析技術是氣相色譜層析(GC)和液相層析(LC), 它們允許複雜基質中農藥殘留的定性和定量.

GC is combined with different kinds of detection methods, mainly depending on the class of pesticides to be quantified [48]. Electron capture detection(ECD), nitrogen-phosphorus detection(NPD), flame-ionization detection(FID), flame-photometric detection(FPD) and mass-selective detection(MSD) have been employed for pesticide residue determination in cereal samples.

GC結合不同的檢測方法, 主要是取決於要進行定量的農藥類別[48]. 電子捕獲檢測器(ECD), 氮 - 磷檢測器(NPD), 火焰離子化檢測器(FID), 火焰光度檢測器(FPD)和 質量選擇性檢測器(MSD) 已用於穀物樣品中的農藥殘留檢測.

GC-MS is also frequently used for determination pesticide residues in cereal samples and can be done by electron impact(EI), and Positive or negative chemical ionization(PCI, NCI). The Table 2 summarizes details of several methods developed for the determination of pesticide and others analytes in different cereal samples.

GC-MS也經常用於測定穀物樣品中的農藥殘留, 並且可以通過電子轟擊(EI), 以及正或負化學電離(PCI, NCI)來完成. 在表2中摘要了用於不同的穀物樣品中的農藥及其它分析物測定的幾種已開發的方法的細節.

LC has been used for the analysis of polar and/or non-volatile and/or thermally labile pesticides for which GC conditions were not suitable [65]. Most used detectors are UV, diode array detector(DAD) and MSD, as we can see the Table 2.
Traditional UV detectors and DADs are often less selective and less sensitive than GC instruments but, in recent years, the commercial availability of atmospheric pressure ionization(API), in combination with MS instruments, has increased the sensitivity by several orders of magnitude [66].

LC已被用於極性和/或非揮發性和/或熱不穩定農藥的分析, GC條件不適合這些[65]. 最常用的檢測器是UV(紫外檢測器), 二極管陣列檢測器(DAD)和MSD, 就如我們在到表2可以看到的.
傳統的UV檢測器和DAD選擇性經常較差, 比GC儀器不敏感, 但近年來, 大氣壓電離(API)的商業化設備的可獲得, 與MS儀器相結合, 已經增加的零敏度幾個數量的大小[66].

LC-MS/MS applications reported for the analysis of pesticides residues in cereal samples are performed with two different ionization techniques: electrospray ionization(ESI) and atmospheric pressure chemical ionization(APCI).
Although ESI is the more often used when compared with APCI source.
Table 2. Different methods applied to the determination of pesticide and others analytes in different cereal samples.

有報告出來, 用於穀物樣品中農藥殘留分析的LC-MS/MS應用, 用兩種不同的離子化技術來進行: 電噴霧電離(ESI)和大氣壓化學電離(APCI). 雖然ESI是比APCI離子源較經常被使用.
表2, 不同的方法用於不同的穀物樣品中的農藥及其它分析物測定.

4. Conclusions
Although detection equipment's are becoming more specific and sensitive, there is still a need for efficient sample preparation methods for pesticides residues analysis in cereals and feedstuffs, which are compatible with modern analytical techniques.
Despite the advances in separation and detection of the chromatographic systems, cleanup remains important for obtaining reliable data.
There is still a need for effective, environmentally friendly and fast methods for sample treatment and determination of pesticide residues in fatty food matrices e.g. cereals and feedstuffs.
4. 結論
雖然檢測儀器有愈來愈好的專一性和靈敏度, 對於能夠與現代分析技術兼容的穀物和飼料裏的農藥殘留分析的有效率的樣品製備方法仍然需要.
儘管在層析系統的分離和檢測的進步, 淨化清理以獲得可靠數據的仍然是很重要的.
對於在脂肪食物, 如穀物和飼料, 的基質裏的農藥殘留的樣品處理及測定, 仍然需要有效, 環境友善和快速的方法.

Modern sample preparation techniques should be not only simple, reliable, cheap and take into account chemical laboratory waste problems, but also must be similar to common analytical techniques, in order to minimize errors.
For these reasons, modern trends in analytical chemistry are towards the simplification and miniaturization of sample preparation, and the minimization of sample size and organic solvent used.

現代化的樣品製備技術應該是不僅操作簡單, 可靠, 便宜並考慮到化學實驗室廢棄物的問題​​, 但也必須類似於普通的分析技術, 以能使誤差最小化.
由於這些原因, 分析化學的現代趨勢是朝向簡化和小型化的樣品製備, 和樣品大小和所用有機溶劑的最小化.

The development of such procedures combined with modern chromatographic-mass spectrometric techniques will enable analysis at the low levels now required by legislation for many pesticides, but more importantly, result in methods which produce more reliable data to support food safety monitoring programs.
This is the trend although it is impossible to develop a unique protocol covering such a wide range of compounds.
Finally, multiclass multiresidue methods covering large number of pesticides are highly desirable, although the different nature, classes and physico-chemical properties of pesticides hamper the development of such methods.

與現代層析-質譜技術的結合, 這些程序發展, 將使能做到現今對很多農藥低濃度分析的法定需要, 但更重要的是, 得到產生更可靠的數據以支持食品安全監測計劃方法的結果.
這是趨勢, 雖然是不可能開發出一個單一的, 可涵蓋如此廣泛範圍化合物的草案方法. 畢竟, 涵蓋大量的農藥的多類別, 多殘留方法是非常需要的, 雖然農藥的不同性質, 類別和物理-化學性質妨礙了這種方法的發展.

Author details
作者詳細信息
Renato Zanella, Osmar Damian Prestes, Caroline do Amaral Friggi, Manoel Leonardo Martins and Martha Bohrer Adaime Laboratorio de Analises de Residuos de Pesticidas(LARP), Departamento de Quimica, Universidade Federal de Santa Maria, Santa Maria - RS, Brazil Acknowledgement The authors thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, Brasilia, Brazil), the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brasilia, Brazil) and the Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul(FAPERGS, Porto Alegre, Brazil) for financial support and fellowships. 5.

References

[1] Walorczyk S(2008) Development of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography–tandem quadrupole mass spectrometry II. Improvement and extension to new analytes. J. Chromatogr. A 1208: 202-214.
[2] Wang J, Leung D(2009) Applications of Ultra-performance Liquid Chromatography Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry on Analysis of 138 Pesticides in Fruit- and Vegetable-Based Infant Foods. J. Agric. Food Chem. 57: 2162–2173.
[3] Hercegova A, Domotorova M, Matisova E(2007) Sample preparation methods in the analysis of pesticide residues in baby food with subsequent chromatographic determination. J. Chromatogr. A 1153: 54-73.
[4] Beddington J(2010) Food security: contributions from science to a new and greener revolution. Phil. Trans. R. Soc. B 365: 61-71.
[5] Nguyen TD, Yu JE, Lee DM, Lee GH(2008) A multiresidue method for the determination of 107 pesticides in cabbage and radish using QuEChERS sample preparation method and gas chromatography mass spectrometry. Food Chem. 110: 207- 213.
[6] Cajka T, Hajslova J, Lacina O, Mastovska K, Lehotay SJ(2008) Rapid analysis of multiple pesticide residues in fruit-based baby food using programmed temperature vaporiser injection–low-pressure gas chromatography–high-resolution time-of-?ight mass spectrometry. J. Chromatogr. A 1186: 281–294.
[7] Pinto CG, Laespada MEF, Martin SH, Ferreira AMC, Pavon JLP, Moreno BM(2010) Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples. Talanta 81: 385-391.
[8] Ramos L(2012) Critical overview of selected contemporary sample preparation techniques. J. Chromatogr. A 1221: 84-98.
[9] Gilbert-Lopez B, Garcia-Reyes JF, Molina-Diaz A(2009) Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta 79: 109-128.
[10] Lambropoulou DA, Albanis TA(2007) Methods of sample preparation for determination of pesticide residue in food matrices by chromatography-mass spectrometry-based techniques: a review. Anal. Bioanal. Chem. 389: 1663-1683.
[11] Pareja L, Fernandez-Alba AR, Cesio V, Heinzen H(2011) Analytical methods for pesticide residues in rice. Trends Anal. Chem. 3: 270-291.
[12] Beyer A, Biziuk M(2008) Applications of sample preparation techniques in the analysis of pesticides and PCBs in food. Food Chem. 108: 669–680.
[13] Chen J, Duan C, Guan Y(2010) Sorptive extraction techniques in sample preparation for organophosphorus pesticides in complex matrices. J. Chromatogr. B 878: 1216-1225.
[14] Zhang L, Liu S, Cui X, Pan C, Zhang A, Chen F(2012) A review of sample preparation methods for the pesticide residue analysis in foods. Cent. Eur. J. Chem. 10: 900-925.
[15] Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ(2003) Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce. J. AOAC Int. 86: 412-431.

[16] Sospedra I, Blesa J, Soriano JM, Manes J(2010) Use of the modi?ed quick easy cheap effective rugged and safe simple preparation approach for the simultaneous analysis of type A- and B-trichothecenes in wheat ?our. J. Chromatogr. A 1217: 1437-1440. [17] Lehotay SJ, Mastovska K, Lightfield AR(2005) Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J. AOAC Int. 88: 615-629.
 [18] Anastassiades M, Scherbaum E, Tasdelen B, Stajnbaher D in: Ohkawa H, Miyagawa H, Lee PW(2007) Crop Protection, Public Health, Environmental Safety. Weinheim: Wiley- VCH. 439 p.
 [19] Kolberg DI, Prestes OD, Adaime MB, Zanella R(2010) Development of a fast multiresidue method for the determination of pesticides in dry samples(wheat grains, flour and bran) using QuEChERS based method and GC–MS. Food Chem. 125: 1436– 1442.
[20] Borges JF, Cabrera JC, Delgado MAR, Suarez EMH, Sauco VG(2009) Analysis of pesticide residues in bananas harvested in the Canary Islands(Spain). Food Chem. 113: 313-319.
[21] Keegan J, Whelan M, Danaher M, Crooks S, Sayers R, Anastasio A, Elliott C, Brandon D, Furey A, O’Kennedy R(2009) Benzimidazolecarbamate residues in milk: Detection by Surface Plasmon Resonance-biosensor, using a modified QuEChERS(Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction. Anal. Chim. Acta, 654: 111- 119.
[22] Walorczik S(2007) Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography- triple quadrupole tandem mass spectrometry. J. Chromatogr. A 1165: 200-212.
[23] Paya P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A(2007) Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bional. Chem. 389: 1697-1714.
[24] Hiemstra M, Kok A(2007) Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1154: 3–25.
[25] Li J, Donga F, Xua J, Liua X, Li Y, Shanb W, Zhenga Y(2011) Enantioselective determination of triazole fungicide simeconazole in vegetables, fruits, and cereals using modi?ed QuEChERS(quick, easy, cheap, effective, rugged and safe) coupled to gas chromatography/tandem mass spectrometry. Anal. Chim. Acta 702: 127–135.
[26] Koesukwiwat U, Sanguankaew K, Leepipatpiboon N(2008) Rapid determination of phenoxy acid residues in rice by modi?ed QuEChERS extraction and liquidchromatography–tandem mass spectrometry. Anal. Chim. Acta 626: 10–20.
 [27] Mastovska K, Dorweiller KJ, Lehotay SJ, Wegscheid JS, Szpylka KA(2010) Pesticide Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method Combined with Automated Direct Sample Introduction GC-TOFMS and UPLC-MS/MS Techniques. J. Agric. Food Chem. 58: 5959-5972.
[28] Cunha S, Fernandes JO(2011) Multipesticide residue analysis in maize combining acetonitrile-based extraction with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. J. Chromatogr. A 1218: 7748–7757.
 [29] Gonzalez RR, Frenich AG, Vidal JLM, Prestes OD, Grio SL(2011) Simultaneous determination of pesticides, biopesticides and mycotoxins in organic products applying a quick, easy, cheap, effective, rugged and safe extraction procedure and ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1218: 1477–1485. [30] Pareja L, Cesio V, Heinzen H, Fernandez-Alba AR(2011) Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC–MS/M. Talanta 83: 1613–1622. [31] Wang J, Chow W, Cheung W(2011) Application of a Tandem Mass Spectrometer and Core–Shell Particle Column for the Determination of 151 Pesticides in Grains. J. Agric. Food Chem. 59: 8589-8608. [32] Anagnostopoulos CJ, Sarli PA, Liapis K, Haroutounian SA, Miliardis GE(2011) Validation of Two Variations of the QuEChERS Method for the Determination of Multiclass Pesticide Residues in Cereal-Based Infant Foods by LC–MS/MS. Food Anal. Methods, in press(doi: 10.1007/s12161-011-9296-z)
[33] Marchis D, Ferro GL, Brizio P, Squadrone S, Abete MC(2012) Detection of pesticides in crops: A modi?ed QuEChERS approach. Food Control 25: 270-273.
[34] Wang P, Yang X, Wang J, Cui J, Dong AJ, Zhao HT, Zhang LW, Wang ZY, Xu P, Li RB, Zhang WJ, Zhang YC, Jing H(2012) Multi-residue method for determination of 7 neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by High performance liquid chromatography. Food Chem.(in press). doi: 10.1016/j.foodchem.2012.03.103.
[35] Wilkowska A, Biziuk M(2011) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 125:803–812. [36] Prestes OD, Friggi CA, Adaime MB, Zanella R(2009) QuEChERS - A modern sample preparation method or pesticide multiresidue determination in food by chromatographic methods coupled to mass spectrometry. Quim. Nova 32: 1620-1634.
[37] Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P(2006) Determination of endocrine-disrupting compounds in cereals by pressurized liquid extraction and liquid chromatography–mass spectrometry Study of background contamination. J. Chromatogr. A 1137: 207–215.
[38] Richter BE, Jones BA, Ezzell JL, Porter NL(1996) Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 68: 1033-1039.
[39] Pallaroni L, Von Holst C(2003) Determination of zearalenone from wheat and corn by pressurized liquid extraction and liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A 993: 39-45.
[40] Von Holst C, Serano F, Sporring S, Bjorklund E, Muller A(2005) Optimisation of pressurized liquid extraction for the determination of seven selected polychlorinated biphenyls in feed samples. Chromatographia 61: 391-396.
[41] Sun H, Ge X, Lv Y, Wan A(2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J. Chromatogr. A 1237:1-23.
[42] Brutti M, Blasco C, Pico Y(2010) Determination of benzoylurea insecticides in food by pressurized liquid extraction and LC-MS. J. Sep. Sci. 33: 1–10.
[43] Zhang Y, Yang J, Shi R, Su Q, Yao L, Li P(2011) Determination of acetanilide herbicides in cereal crops using accelerated solvent extraction, solid-phase extraction and gas chromatography-electron capture detector. J. Sep. Sci. 34: 1675–1682.
[44] Lehotay SJ(1997) Supercritical fluid extraction of pesticides in foods. J. Chromatogr. A 785: 289-312.
 [45] Herrero M, Mendiola JA, Cifuentes A, Ibanez E(2010) Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 1217: 2495-2511.
[46] Naeeni MH, Yamini Y, Rezaee M(2011) Combination of supercritical fluid extraction with dispersive liquid–liquid microextraction for extraction of organophosphorus pesticides from soil and marine sediment samples. J. Supercrit. Fluids 57: 219-226.
[47] Stoytcheva, M.(2011) Pesticides - Strategies for Pesticides Analysis. Rijeka: InTech. p. 403.
[48] LeDoux M(2011) Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. J. Chromatogr. A 1218: 1021-1036.
[49] Aguilera A, Rodriguez M, Brotons M, Boulaid M, Valverde A(2005) Evaluation of Supercritical Fluid Extraction/Aminopropyl Solid-Phase “In-Line” Cleanup for Analysis of Pesticide Residues in Rice. J. Agric. Food Chem. 53: 9374-9382. [50] Zwir-Ferenc A, Biziuk M(2006) Solid phase extraction technique - Trends, opportunities and applications. Polish J. Environ. Stud. 15: 677-690.
[51] Pico Y, Fernandez M, Ruiz MJ, Font G(2007) Current trends in solid-phase based extraction techniques for the determination of pesticides in food and environment. J. Biochem. Biophys. Methods 70: 117–131. [52] Guo C, Hu JY, Chen XY, Li JZ(2008) Analysis of Imazaquin in Soybeans by Solid-phase Extraction and High-performance Liquid Chromatography. Bull. Environ. Contam. Toxicol. 80: 173–177. [53] Hu JY, Zhen ZH, Deng ZB(2011) Simultaneous Determination of Acetochlor and Propisochlor Residues in Corn and Soil by Solid Phase Extraction and Gas Chromatography with Electron Capture Detection. Bull. Environ. Contam.Toxicol. 86: 95–100. [54] Wu S, Mei J(2011) Analysis of the Herbicide Bispyribac-sodium in Rice by Solid Phase Extraction and High Performance Liquid Chromatography. Bull. Environ. Contam. Toxicol. 86: 314–318.
 [55] Barker SA, Long AR, Short CR(1989) Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A 475: 353–361.
[56] Ridgway K, Lalljie SPD, Smith RM(2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A 1153: 36- 53.
[57] Marazuela MD, Bogialli S(2009) A review of novel strategies of sample preparation for the determination of antibacterial residues in foodstuffs using liquid chromatography- based analytical methods. Anal. Chim. Acta 645: 5-17.
[58] Tsochatzis ED, Menkissoglu-Spiroudi U, Karpouzas D G, Tzimou-Tsitouridou R(2010) A multi-residue method for pesticide residue analysis in rice grains using matrix solid- phase dispersion extraction and high-performance liquid chromatography–diode array detection. Anal. Bioanal. Chem. 397: 2181-2190.
[59] Michel M, Buszewski B(2003) Isolation and determination of carbendazim residue from wheat grain by matrix solid-phase dispersion and HPLC. J. Sep. Sci. 26: 1269–1272.
[60] Rubert J, Soler C, Manes J(2011) Evaluation of matrix solid-phase dispersion(MSPD) extraction for multi-mycotoxin determination in different flours using LC–MS/MS. Talanta 85: 206-215.
[61] Juan C, Molto JC, Lino CM, Manes J(2008) Determination of ochratoxin A in organic and non-organic cereals and cereal products from Spain and Portugal. Food Chem. 107: 525-530.
[62] Lee MK, Weg G, Traag WA, Mol HGJ(2008) Qualitative screening and quantitative determination of pesticides and contaminants in animal feed using comprehensive two- dimensional gas chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 1186: 325-339.
[63] Zhang WG, Chu XG, Cai HX, An J, Li CJ(2006) Simultaneous determination of 109 pesticides in unpolished rice by a combination of gel permeation chromatography and Florisil column purification, and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 20: 609-617.
[64] Presta MA, Kolberg DIS, Wickert C, Pizzutti IR, Adaime MA, Zanella R.(2009) High Resolution Gel Permeation Chromatography Followed by GC-ECD for the Determination of Pesticide Residues in Soybeans. Chromatographia 69: 237-241.
[65] Prestes OD, Adaime MB, Zanella R(2011) QuEChERS: possibilities and trends in sample preparation for multiresidue determination of pesticides in food. Scientia Chromatographica 3: 51-64.
[66] Alder L, Greulich K, Kempe G, Vieth B(2006) Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25: 838-865.

太陽系分析基礎開發工作室(ABDC, The Analytical Based Development Center)
營業: 407台中市西屯區福順路641號5樓
        (中科園區&台中工業區)
研發: 436 台中市清水區高北里護岸路140-7號
        (高美濕地&媽祖文化園區)
Email:  service@chromnet.net
04-2462 8085, FAX:04-2256 9743
The Analytical Based Development Center
Zipcode:407
5th Floor, NO.641, Fu Shun Road, Shi-Tuen District , Taichung City, Taiwan, R.O.C.
886-4-24628085, FAX:886-4-22569743
Email:  service@chromnet.net

LINE:service.abdc, SKYPE: skypeabdc, QQ: qqabdc(2220487599)
 
http://www.chromnet.net/  
版權所有, 請勿翻印使用, 歡迎正常使用的連結.

台中 伴手禮 文化節 禮物 母親節 端午節 高美濕地 佳節倍思親,好禮表孝心, 父母的健康,就是子女的孝心. 佳節好禮, WWW.chromnet.net 穩達F3靈芝多醣體在使用中可持續保有可視圖文的肥皂 (Soaps with Sustained Visible Characters and Graphics while applying) 一.特點, 二.可客製化設計三.訂購方式特點: (專利申請中:101150476, 102105651)  1.含有金玉良言及圖案 2.一直洗,一直洗,仍可看得到圖文 3.可多層組成一組詩詞短句本項發明的目的在於提供各種內含有圖案或文字的肥皂, 此圖案或文字具有深度方向的厚度, 以使得在肥皂的在使用過程中, 仍可持續保有可以被看到的圖案或文字. The purpose of this invention is to provide soaps with characters and graphics included. The included characters and graphics have their depths in the thickness direction to sustain their visibilities while applying the soaps. 現有的各種肥皂所內含的圖案或文字, 主要都以表面淺層凹版或凸版方式製作, 在短暫的使用後, 肥皂表面的圖案或文字即被消耗而看不見了, 因而未能在其使用過程中持續保有可以被看到的圖案或文字. 本項發明的目的在於提供各種內含有圖案或文字的肥皂, 此圖案或文字具有深度方向的厚度, 以使得在肥皂的在使用過程中, 仍可持續保有可以被看到的圖案或文字.本系統發明的重點在於其應用方式, 組構型態及製作, 所用零組件能達到所須功能即可. 利用各種常見或特定的肥皂的材料及色料, 製作含有圖案或文字的肥皂,此圖案或文字具有深度方向的厚度. 可客製化設計: 我們可以依據您們的指定,設計所須要的"深度圖文耐用皂", 包括: 皂體尺寸,圖文內容,皂體顏色,圖文顏色,香精成份,單一皂體包裝材質及印刷內容,多皂體禮盒構造材質及印刷內容等... "深度圖文耐用皂" 是可以重疊多層,形成一個含有多層文字圖案的耐用皂,其特點是可在一個多層文字圖案耐用皂裏表達出一篇簡短的古詩,現代詩,對聯或短句等,是我們的專利主要訴求之一.  另我們也可有涵蓋到固體芳香劑及馬桶小便斗除臭劑的應用上,使得芳香劑及馬桶小便斗除臭劑上可以有不同顏色的文字或線條圖案,如"早安"或"請對準","花朵"或"蒼蠅"(圖案),深度都是與固體芳香劑及馬桶小便斗除臭劑的厚度一樣,在用完以前就可以一直被看到,這也是既實用有創新的應用. 客製化的設計, 可以增進客戶的在創新服務層面的評價, 使得產品及服務內容更具有吸引力. 訂購方式: 請至各子項目查看各現有產品訂價,確定所需品項,香精種類及數量之後,請直接以EMAIL連繫,經我們確定可交件日期後,即可付款訂購. 常見香精有:香茅,艾草,薰衣草,樟樹,茶樹,玫瑰麝香,甜菊,月桂,... 運費及運送方式:一次購滿500元免運費,500元以下酌收50-80元運費.以郵局包裹方式運送.  匯款資訊:台中市清水區農會 活期存款帳號名稱:林坤益 (+) 太陽系分析基礎開發中心, 帳號: 45000100033625 通匯代碼: 9544505 NOTE:1.香精種類很多,部份香精對特定體質具有刺激性或過敏性,一般建議先少量短期使用,以確保適用. NOTE:2.不同成份的香精成本差距相當大(5-20倍),在您確認訂購時,會適度酌收高單價香精的成本費用. NOTE:3.不加香精也是種很好的選項,完全不用顧慮刺激性或過敏性問題,但使用時會有甘油皂基的原本不香的味道.能夠體認習慣了也是很好的選項. NOTE4:客製化部份, 煩均以email連繫及確認需求及可交件日期,     良言一句三冬暖(星雲--遠見雜誌)  語言是思想和觀念的表象, 用來聯繫人心的般若風光. 若能時時慎之於口, 與他人共享, 陽光,花朵.淨水般的話語, 人生必然豐美... (http://www.gvm.com.tw/Boardcontent_4574.html) 多年以前,曾經在一篇文章裡,讀到這麼一句話:「語言,要像陽光、花朵、淨水。」當時深深感到十分受用,於是謹記心田,時刻反省,隨著年歲的增長,益發覺得其中意味深長。 http://www.sfes.tc.edu.tw/index.asp(上楓國小好話實踐) http://www.sfes.tc.edu.tw/index.asp(上楓國小唐詩河洛語線上教學)       節氣指二十四時節和氣候,是中國古代訂立的一種用來指導農事的補充曆法,... http://zh.wikipedia.org/wiki/节气二十四節氣(農委會)http://www.coa.gov.tw/view.php?catid=284 今日星象、行星動向、節氣 http://web2.nmns.edu.tw/constellation/home.php AEEA 天文教育資訊網 http://aeea.nmns.edu.tw/ 太陽系的前世今生, 影像提供:NASA/ESA,陳輝樺(NMNS) http://aeea.nmns.edu.tw/index1.html   大地藏無盡, 勤勞資有生, 念哉斯意厚,努力事春耕. 一.特點,二.可客製化設計,三.訂購方式   大地藏無盡  念哉斯意厚 勤勞資有生 努力事春耕298元/組(320g) 誠歡迎有天文學,民俗學及相關的教育及創新構想的原創者及推廣者,與我們密切合作 !    氨基酸分子模型系列(19種常見氨基酸) 由丙氨酸的基礎結構可研衍生出各種常見氨基酸分子結構一.特點,二.可客製化設計,三.訂購方式   分子球 89元/個(80g)    丙安酸(Alanine)  丙氨酸 369元/個(330g) 麩氨酸(圓柱) 469元/個(430g) 誠歡迎有科學教育創新構想的原創者及推廣者,與我們密切合作 ! RainbowDash 及UNLIGHT 是最經點的動漫符號之一網路搜尋即有豐富的資訊. Ranbow Dash 動畫My Little Pony:Friendship is Magic 之主角群之一 Cutie mark的圖案為打著彩虹閃電的雲在故事中代表的精神為"忠誠" UNLIGHT FACEBOOK網頁遊戲以故事為中心的對戰型卡牌養成遊戲玩家人數突破30萬人   好香皂結合好男人及撿肥皂的梗,並將其實體化梗的詳細資料有請 網路搜尋   誠歡迎有文化及新構想的原創者及推廣者,與我們密切合作. 先民從大陸移居台灣,渡過黑水溝,也把馬祖信仰帶來台灣。媽祖信仰起源於西元10世紀的宋朝,幾乎每個台灣人都耳熟能詳福建莆田湄洲林默娘傳說,為了指引出海的父兄返航而犧牲自己,後來成為漁民信仰的「航海女神」。 一.特點,二.可客製化設計,三.訂購方式   保庇 89元/個(80g)     恭賀新喜_1 79元/個(30g)      金鎖片 79元/個(80g) 元寶錢幣 79元/個(80g)   風調雨順 99元/個(80g) 國泰民安_2 99元/個(80g) 富貴吉祥_1 99元/個(80g) 年年有餘_1 79元/個(80g) 年年有餘_3 99元/個(80g) 誠歡迎有宗教學,民俗學及相關的教育及創新構想的原創者及推廣者,與我們密切合作 ! 牛牽到北京 還是牛,.. 一.特點,二.可客製化設計,三.訂購方式    牛牽到北京   牛牽到北京還是牛 188元/組(160g) 還是牛 台灣諺語_動物篇 http://163.21.2.41/t128/chinesepassport/animals.htm 動物之台灣諺語 www.taiwan123.com.tw/local/a_index.htm 誠歡迎有趣味文學相關的教育及創新構想的原創者及推廣者,與我們密切合作 ! 沒辦法再更傳統了特出的文化產品, 如沐春風粿模經典(雕:餅印.粿印.糕印.糖印) 粿模_財子壽中草藥種苗很專業的中草藥種苗來源, 值得珍藏綬草沒辦法再更先進了用最先進的技術, 提供最優化的生活營養保健美肌保養居家潔身居家潔身深度圖文耐用手工皂唯一可以讓我們的日常生活充滿文學品味的手工皂, 具有無可替代的專利特點發現金玉良言系列良言一句三冬暖媽祖(風調雨順, 國泰民安, 保庇每一個手工皂都有一句媽祖的提示良言, 直到用完前都還能看得見節氣(驚執:大地藏無盡, 勤勞資有生, 念哉斯意厚, 努力事春耕清明節母親節端午節畢業紀念四書, 五經經典文學系列, 詩, 詞, 曲勵志追思永懷親恩祝賀五世其昌情意與關懷 LOVE, WISH, 平安文具禮頻贈品不只是高CP值,還特別具有創新及創意科教禮贈用品結合科學, 教育, 文創, 既有趣又有豐富的科學人文內涵天文科學星座觀測, 觀測工具發現生命的起源及意義考古人類學探索, 學習, 驚奇, 有趣 ... 追思(城鄉差距與世代正義) 記憶伴隨著歲月, 從鄉村到城市, 一切是否留下寶貴的智慧, 或是只是無限的追思 ! 小時候, 母親曾說:"如果我們這邊有一條較直的大路直接到清水鎮上就好了" 這事實上也是我們鄉下人共同的期望與夢想. 記得每年農曆10月13前後, 母親難得年回甲南娘家一次 , 我們總是既期待又害羞. 回甲南娘家其實不遠, 走路只要約50-60分鐘 , 不過幾十年來一直也沒有公車... 有時後總是在想, 這人類的社會到底是怎麼回事 ? 人口總是往都市集中, 留在鄉下卻是一些無法被提起的記憶 ? 因此, 容我們有一點能力與機會, 來訴說我們的所見所知與所感 , 也希望這一切是留下來的不只是無限的追思.